Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

t-3-Pentyl-r-2,c-6-diphenylpiperidin-4one

P. Gayathri,^a J. Jayabharathi,^b G. Rajarajan,^b A. Thiruvalluvar^a* and R. J. Butcher^c

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thaniavur 613 005, Tamilnadu, India, ^bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: athiru@vsnl.net

Received 1 November 2009: accepted 5 November 2009

Key indicators: single-crystal X-ray study; T = 110 K; mean σ (C–C) = 0.001 Å; R factor = 0.046; wR factor = 0.121; data-to-parameter ratio = 28.0.

In the title molecule, $C_{22}H_{27}NO$, the piperidine ring adopts a chair conformation, with all substituents equatorial. The dihedral angle between the two phenyl rings is $56.90 (5)^{\circ}$. In the crystal, molecules are linked by weak $C-H \cdots O$ hydrogen bonds. A C-H··· π interaction involving the phenyl ring at the 6-position is also found in the crystal structure.

Related literature

For a related crystal structure, see: Thiruvalluvar et al. (2007). For the biological activity ofpiperidines, see: Venketeshperumal et al. (2001).

Experimental

Crystal data C22H27NO

 $M_r = 321.45$

Z = 4

Mo $K\alpha$ radiation

 $0.48 \times 0.32 \times 0.12 \text{ mm}$

16194 measured reflections

6192 independent reflections 4118 reflections with $I > 2\sigma(I)$

 $\mu = 0.07 \text{ mm}^{-1}$

T = 110 K

 $R_{\rm int} = 0.030$

Monoclinic, $P2_1/n$ a = 12.2318 (5) Å b = 5.5879 (2) Å c = 26.9977(10) Å $\beta = 94.377 \ (3)^{\circ}$ V = 1839.91 (12) Å³

Data collection

Oxford Diffraction Xcalibur Ruby
Gemini diffractometer
Absorption correction: multi-scan
(CrysAlis Pro; Oxford
Diffraction, 2009)
$T_{\min} = 0.937, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$ wR(F ²) = 0.121	H atoms treated by a mixture of independent and constrained
S = 0.96	refinement
221 parameters	$\Delta \rho_{\rm max} = 0.31 \text{ e A}^{-1}$ $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-H6\cdots O4^{i}$ $C34-H34B\cdots Cg1^{ii}$	1.00	2.59	3.2798 (11)	126
	0.99	2.87	3.7809 (12)	154

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x, -y, -z. Cg1 is the centroid of the C61–C66 ring.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2365).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thiruvalluvar, A., Balamurugan, S., Jayabharathi, J., Manimekalai, A. & Rajarajan, G. (2007). Acta Cryst. E63, o2886.
- Venketeshperumal, R., Adiraj, M. & Shanmugapandian, P. (2001). Indian Drugs, 38, 167-169.

Acta Cryst. (2009). E65, o3083 [doi:10.1107/S1600536809046753]

t-3-Pentyl-r-2,c-6-diphenylpiperidin-4-one

P. Gayathri, J. Jayabharathi, G. Rajarajan, A. Thiruvalluvar and R. J. Butcher

Comment

Piperidones exhibit a wide spectrum of biological activities and form an essential part of the molecular structures of important drugs. Molecular geometry critically influences biological activity. Attention has been focused on structure-activity relationships. Piperidines with crowded groups at C3 and C5 have enhanced biological activity compared to other piperidines (Venketeshperumal *et al.*, 2001).

As part of our research, we have synthesized the title compound and report its crystal structure here. Thiruvalluvar *et al.*, (2007) have reported the crystal structure of a diphenylpiperidin-4-ol derivative, in which the piperidine ring adopts a chair conformation.

In the title molecule, $C_{22}H_{27}NO$, (Fig.1) the piperidine ring adopts a chair conformation, with all substituents equatorial. The dihedral angle between the two phenyl rings is 56.90 (5)°. Molecules are linked by C6—H6…O4(-*x*, 1 - *y*, -*z*) weak hydrogen bonds. A C34—H34B… π (-*x*, -*y*, -*z*) interaction involving the phenyl ring (C61—C66) is also found in the crystal structure.

Experimental

A mixture of ammonium acetate (38.5 g, 0.5 mol), benzaldehyde (106.12 ml, 1 mol) and 2-octanone (64.10 ml, 0.5 mol) in distilled ethanol was heated to boiling. After cooling the viscous liquid obtained was dissolved in diethyl ether (200 ml) and shaken with 10 ml concentrated hydrochloric acid. The precipitated hydrochloride of the title compound was removed by filtration and washed with 40 ml mixture of ethanol and diethyl ether (1:1) and then with diethyl ether to remove most of the coloured impurities. The base was liberated from an alcoholic solution by adding aqueous ammonia and then diluting with water. It was purified by column chromatography, using an n-hexane-ethyl acetate mixture as the solvent. The yield of the compound was 80%.

Refinement

The N-bound H atom was located in a difference Fourier map and refined freely; N1—H1 = 0.911 (12) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 - 1.00 Å; $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for methyl and 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the asymmetric unit, showing the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2. The packing of the title compound, viewed down the *b* axis. Dashed lines indicate C—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

t-3-Pentyl-r-2,c-6-diphenylpiperidin-4-one

Crystal data

C ₂₂ H ₂₇ NO	$F_{000} = 696$
$M_r = 321.45$	$D_{\rm x} = 1.160 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 368 K
Hall symbol: -P 2yn	Mo K α radiation, $\lambda = 0.71073$ Å
a = 12.2318 (5) Å	Cell parameters from 5712 reflections
b = 5.5879 (2) Å	$\theta = 4.9 - 32.7^{\circ}$
c = 26.9977 (10) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\beta = 94.377 \ (3)^{\circ}$	T = 110 K
$V = 1839.91 (12) \text{ Å}^3$	Rectangular-plate, colourless
Z = 4	$0.48 \times 0.32 \times 0.12 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer	6192 independent reflections
Radiation source: Enhance (Mo) X-ray Source	4118 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.030$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\text{max}} = 32.8^{\circ}$
T = 110 K	$\theta_{\min} = 5.0^{\circ}$
ω scans	$h = -17 \rightarrow 17$
Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009)	$k = -8 \rightarrow 8$
$T_{\min} = 0.937, \ T_{\max} = 1.000$	$l = -35 \rightarrow 40$
16194 measured reflections	

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.121$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0674P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.96	$(\Delta/\sigma)_{\text{max}} = 0.001$
6192 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
221 parameters	$\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
O4	-0.02984 (5)	0.25856 (13)	0.02836 (2)	0.0227 (2)
N1	0.29439 (6)	0.34289 (15)	0.05803 (3)	0.0171 (2)
C2	0.22093 (7)	0.38195 (17)	0.09795 (3)	0.0165 (2)
C3	0.12069 (7)	0.21283 (18)	0.09013 (3)	0.0169 (3)
C4	0.06862 (8)	0.23999 (17)	0.03724 (3)	0.0173 (2)
C5	0.14663 (8)	0.24418 (18)	-0.00331 (3)	0.0192 (3)
C6	0.24286 (7)	0.41460 (18)	0.00937 (3)	0.0172 (3)
C21	0.28492 (7)	0.34132 (18)	0.14743 (3)	0.0172 (3)
C22	0.34717 (8)	0.13503 (19)	0.15574 (3)	0.0207 (3)
C23	0.40971 (8)	0.1003 (2)	0.20020 (4)	0.0255 (3)
C24	0.40946 (9)	0.2723 (2)	0.23750 (4)	0.0291 (3)
C25	0.34617 (9)	0.4751 (2)	0.23009 (4)	0.0293 (3)
C26	0.28428 (8)	0.51060 (19)	0.18526 (4)	0.0225 (3)
C31	0.03717 (8)	0.24628 (18)	0.12901 (4)	0.0201 (3)
C32	-0.03780 (8)	0.0314 (2)	0.13360 (4)	0.0221 (3)
C33	-0.12480 (8)	0.06791 (19)	0.17050 (4)	0.0219 (3)
C34	-0.20306 (9)	-0.1429 (2)	0.17217 (4)	0.0299 (3)
C35	-0.29164 (9)	-0.1088 (3)	0.20818 (4)	0.0348 (4)
C61	0.32404 (7)	0.40532 (18)	-0.03020 (3)	0.0173 (3)
C62	0.32447 (9)	0.58540 (19)	-0.06565 (4)	0.0248 (3)
C63	0.39528 (9)	0.5724 (2)	-0.10367 (4)	0.0294 (3)
C64	0.46508 (8)	0.3801 (2)	-0.10661 (4)	0.0264 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C65	0.46548 (9)	0.1999 (2)	-0.07135 (4)	0.0276 (3)
C66	0.39528 (8)	0.2136 (2)	-0.03327 (4)	0.0241 (3)
H1	0.3572 (10)	0.428 (2)	0.0651 (4)	0.021 (3)*
H2	0.19459	0.55139	0.09639	0.0197*
Н3	0.14887	0.04518	0.09352	0.0203*
H5A	0.10677	0.29558	-0.03481	0.0230*
H5B	0.17510	0.08071	-0.00819	0.0230*
H6	0.21426	0.58156	0.01167	0.0206*
H22	0.34686	0.01608	0.13059	0.0249*
H23	0.45262	-0.04059	0.20520	0.0306*
H24	0.45269	0.24994	0.26790	0.0349*
H25	0.34479	0.59133	0.25572	0.0351*
H26	0.24127	0.65141	0.18044	0.0270*
H31A	0.07699	0.27722	0.16169	0.0242*
H31B	-0.00827	0.38878	0.12012	0.0242*
H32A	0.00745	-0.10925	0.14406	0.0266*
H32B	-0.07477	-0.00435	0.10053	0.0266*
H33A	-0.08807	0.09314	0.20405	0.0263*
H33B	-0.16739	0.21403	0.16129	0.0263*
H34A	-0.16033	-0.28830	0.18179	0.0359*
H34B	-0.23859	-0.16958	0.13844	0.0359*
H35A	-0.33880	-0.25068	0.20750	0.0522*
H35B	-0.33584	0.03216	0.19838	0.0522*
H35C	-0.25732	-0.08574	0.24184	0.0522*
H62	0.27630	0.71802	-0.06399	0.0298*
H63	0.39541	0.69675	-0.12767	0.0352*
H64	0.51277	0.37121	-0.13272	0.0317*
H65	0.51358	0.06723	-0.07319	0.0331*
H66	0.39612	0.09009	-0.00905	0.0289*

Atomic displacement parameters (\AA^2)

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	U^{13}	U^{23}
O4	0.0151 (3)	0.0264 (4)	0.0265 (4)	-0.0013 (3)	0.0007 (3)	0.0036 (3)
N1	0.0131 (4)	0.0236 (4)	0.0147 (3)	-0.0032 (3)	0.0021 (3)	-0.0007 (3)
C2	0.0157 (4)	0.0180 (4)	0.0160 (4)	-0.0013 (4)	0.0035 (3)	-0.0019 (3)
C3	0.0142 (4)	0.0196 (5)	0.0173 (4)	-0.0018 (4)	0.0031 (3)	-0.0017 (4)
C4	0.0157 (4)	0.0148 (4)	0.0213 (4)	-0.0026 (4)	0.0013 (3)	-0.0008 (3)
C5	0.0168 (4)	0.0238 (5)	0.0170 (4)	-0.0019 (4)	0.0012 (3)	-0.0021 (4)
C6	0.0160 (4)	0.0189 (5)	0.0168 (4)	0.0000 (4)	0.0018 (3)	0.0002 (3)
C21	0.0135 (4)	0.0226 (5)	0.0160 (4)	-0.0051 (4)	0.0038 (3)	-0.0017 (4)
C22	0.0178 (4)	0.0252 (5)	0.0196 (4)	-0.0017 (4)	0.0041 (3)	-0.0013 (4)
C23	0.0180 (5)	0.0330 (6)	0.0255 (5)	0.0004 (4)	0.0010 (4)	0.0041 (4)
C24	0.0237 (5)	0.0440 (7)	0.0192 (5)	-0.0096 (5)	-0.0015 (4)	0.0018 (5)
C25	0.0319 (6)	0.0363 (6)	0.0198 (5)	-0.0100 (5)	0.0025 (4)	-0.0072 (4)
C26	0.0232 (5)	0.0236 (5)	0.0211 (5)	-0.0044 (4)	0.0051 (4)	-0.0040 (4)
C31	0.0170 (4)	0.0247 (5)	0.0193 (4)	-0.0027 (4)	0.0053 (3)	-0.0037 (4)
C32	0.0209 (5)	0.0265 (5)	0.0197 (5)	-0.0039 (4)	0.0060 (4)	-0.0012 (4)

C33	0.0182 (4)	0.0283 (5)	0.0198 (4)	-0.0014 (4)	0.0050 (3)	0.0008 (4)
C34	0.0253 (5)	0.0393 (7)	0.0260 (5)	-0.0101 (5)	0.0072 (4)	-0.0004 (5)
C35	0.0249 (5)	0.0461 (8)	0.0347 (6)	-0.0062 (5)	0.0101 (5)	0.0083 (5)
C61	0.0150 (4)	0.0216 (5)	0.0153 (4)	-0.0044 (4)	0.0011 (3)	-0.0013 (3)
C62	0.0281 (5)	0.0227 (5)	0.0240 (5)	-0.0010 (4)	0.0044 (4)	0.0030 (4)
C63	0.0345 (6)	0.0324 (6)	0.0219 (5)	-0.0099 (5)	0.0071 (4)	0.0057 (4)
C64	0.0204 (5)	0.0401 (7)	0.0193 (5)	-0.0113 (5)	0.0056 (4)	-0.0045 (4)
C65	0.0208 (5)	0.0364 (6)	0.0263 (5)	0.0020 (5)	0.0066 (4)	-0.0025 (5)
C66	0.0238 (5)	0.0275 (5)	0.0216 (5)	0.0024 (4)	0.0059 (4)	0.0039 (4)
Geometric para	meters (Å, °)					
O4—C4		1.2143 (12)	C2—	-H2	1.0	000
N1—C2		1.4712 (11)	С3—	-H3	1.0	000
N1—C6		1.4688 (12)	С5—	-H5A	0.9	900
N1—H1		0.911 (12)	С5—	-H5B	0.9	900
С2—С3		1.5497 (13)	С6—	-H6	1.0	000
C2—C21		1.5130 (12)	C22-	—H22	0.9	500
C3—C31		1.5310 (13)	C23-	-H23	0.9	500
C3—C4		1.5260 (12)	C24-	—H24	0.9	500
C4—C5		1.5063 (13)	C25-	—H25	0.9	500
C5—C6		1.5323 (13)	C26-	-H26	0.9	500
C6—C61		1.5139 (12)	C31-	-H31A	0.9	900
C21—C22		1.3903 (14)	C31-	-H31B	0.9	900
C21—C26		1.3925 (14)	C32-	-H32A	0.9	900
C22—C23		1.3869 (14)	C32-	—Н32В	0.9	900
C23—C24		1.3922 (16)	C33-	-H33A	0.9	900
C24—C25		1.3784 (16)	C33-	—Н33В	0.9	900
C25—C26		1.3919 (15)	C34-	—Н34А	0.9	900
C31—C32		1.5216 (15)	C34-	-H34B	0.9	900
C32—C33		1.5259 (15)	C35-	-H35A	0.9	800
C33—C34		1.5207 (15)	C35-	-H35B	0.9	800
C34—C35		1.5219 (16)	C35-	-H35C	0.9	800
C61—C66		1.3874 (14)	C62-	-H62	0.9	500
C61—C62		1.3890 (14)	C63-	—Н63	0.9	500
C62—C63		1.3946 (15)	C64-	—H64	0.9	500
C63—C64		1.3785 (15)	C65-	—H65	0.9	500
C64—C65 C65—C66		1.3854 (16) 1.3910 (15)	C66-	—Н66	0.9	500
O4…C32		3.1202 (12)	H5A	····O4 ⁱ	2.6	700
O4…C6 ⁱ		3.2798 (11)	H5A	···H32B ⁱⁱ	2.4	200
O4…C4 ⁱ		3.3294 (11)	H5B	···C66	2.92	200
$O4 \cdots O4^{i}$		3.2139 (10)	H5B	···O4 ⁱⁱ	2.6	300
O4…C4 ⁱⁱ		3.3158 (11)	Н6…	H2	2.3	200
O4…C5 ⁱⁱ		3.2004 (12)	Н6…	H62	2.3	500
O4…C5 ⁱ		3.1736 (12)	Н6…	O4 ⁱ	2.5	900
O4…H32B		2.5300	H22·	··N1	2.7	200

O4…H31B	2.5800	Н22…С3	3.1000
O4…H5A ⁱ	2.6700	H22…H3	2.5500
O4…H5B ⁱⁱ	2.6300	H22····H65 ^{ix}	2.4400
O4…H6 ⁱ	2.5900	H23···C25 ^{vi}	3.1000
N1…H22	2.7200	H24···H32A ^{iv}	2.5200
N1…H66	2.6800	H25…H31A ^{iv}	2.5800
C4…O4 ⁱ	3.3294 (11)	H26···C22 ^{vii}	3.0900
C4…O4 ⁱⁱ	3.3158 (11)	H26…H2	2.3600
C5…O4 ⁱⁱ	3.2004 (12)	H26···C24 ^{iv}	3.0600
C5…O4 ⁱ	3.1736 (12)	H31A…C21	2.6300
C6…O4 ⁱ	3.2798 (11)	H31A…C26	2.8800
C24···C26 ⁱⁱⁱ	3.5857 (15)	H31A…H25 ⁱⁱⁱ	2.5800
C26…C31	3.5949 (14)	H31B…O4	2.5800
C26···C24 ^{iv}	3.5857 (15)	H31B…H33B	2.5100
C31…C26	3.5949 (14)	Н32А…Н3	2.4400
C32…O4	3.1202 (12)	H32A…H34A	2.5600
C3…H22	3.1000	H32A…H24 ⁱⁱⁱ	2.5200
C4…H32B	2.8800	H32B…O4	2.5300
C5···H32B ⁱⁱ	3.0200	H32B…C4	2.8800
C21···H64 ^v	3.0000	H32B…H34B	2.5000
С21…Н31А	2.6300	H32B···C5 ⁱⁱ	3.0200
C22…H26 ^{vi}	3.0900	H32B···H5A ⁱⁱ	2.4200
С22…Н3	2.8900	H33A…H35C	2.5800
С22…Н1	2.955 (11)	H33B…H31B	2.5100
C24···H26 ⁱⁱⁱ	3.0600	H33B…H35B	2.5700
C25···H23 ^{vii}	3.1000	H34A…H32A	2.5600
C26…H64 ^v	3.0200	H34B…H32B	2.5000
С26…Н31А	2.8800	H34B…C63 ⁱⁱ	3.0600
C35····H35C ^{viii}	3.0300	H34B…C64 ⁱⁱ	3.0700
C63···H34B ⁱⁱ	3.0600	H35A…H35C ^{viii}	2.5500
C64…H1 ^v	2.600 (12)	H35B…H33B	2.5700
C64···H34B ⁱⁱ	3.0700	H35B…H63 ⁱ	2.5000
C65…H1 ^v	3.000 (12)	Н35С…Н33А	2.5800
С66…Н1	2.982 (11)	H35C…C35 ^x	3.0300
С66…Н5В	2.9200	H35C···H35A ^x	2.5500
H1…C22	2.955 (11)	Н62…Н6	2.3600
H1…C66	2.982 (11)	H63…H35B ⁱ	2.5000
H1…C64 ^v	2.600 (12)	H64…C21 ^v	3.0000
H1…C65 ^v	3.000 (12)	H64…C26 ^v	3.0200
H1…H64 ^v	2.5800	H64···H1 ^v	2.5800
H2…H6	2.3200	H65…H22 ^{ix}	2.4400
H2…H26	2.3600	H65…H66 ^{ix}	2.5600

Н3…С22	2.8900	H66…N1	2.6800
H3…H22	2.5500	H66····H65 ^{ix}	2.5600
H3…H32A	2.4400		
C2—N1—C6	111.74 (7)	С5—С6—Н6	109.00
C6—N1—H1	110.0 (7)	С61—С6—Н6	109.00
C2—N1—H1	108.8 (7)	C21—C22—H22	120.00
N1—C2—C21	108.71 (7)	С23—С22—Н22	120.00
N1—C2—C3	109.32 (7)	С22—С23—Н23	120.00
C3—C2—C21	112.30 (7)	С24—С23—Н23	120.00
C4—C3—C31	112.13 (8)	C23—C24—H24	120.00
C2—C3—C4	109.65 (7)	C25—C24—H24	120.00
C2—C3—C31	113.24 (7)	С24—С25—Н25	120.00
O4—C4—C5	121.93 (7)	С26—С25—Н25	120.00
O4—C4—C3	122.01 (8)	C21—C26—H26	120.00
C3—C4—C5	116.06 (8)	С25—С26—Н26	120.00
C4—C5—C6	111.45 (7)	C3—C31—H31A	109.00
N1—C6—C5	107.47 (7)	C3—C31—H31B	109.00
C5—C6—C61	110.80 (7)	C32—C31—H31A	109.00
N1—C6—C61	111.22 (7)	C32—C31—H31B	109.00
C2—C21—C26	120.94 (9)	H31A—C31—H31B	108.00
C2—C21—C22	120.46 (8)	С31—С32—Н32А	109.00
C22—C21—C26	118.59 (8)	C31—C32—H32B	109.00
C21—C22—C23	120.99 (9)	С33—С32—Н32А	109.00
C22—C23—C24	119.86 (10)	С33—С32—Н32В	109.00
C23—C24—C25	119.66 (10)	H32A—C32—H32B	108.00
C24—C25—C26	120.37 (10)	С32—С33—Н33А	109.00
C21—C26—C25	120.52 (9)	С32—С33—Н33В	109.00
C3—C31—C32	113.41 (8)	С34—С33—Н33А	109.00
C31—C32—C33	113.72 (9)	С34—С33—Н33В	109.00
C32—C33—C34	112.81 (9)	H33A—C33—H33B	108.00
C33—C34—C35	113.73 (10)	С33—С34—Н34А	109.00
C6—C61—C62	119.91 (9)	С33—С34—Н34В	109.00
C62—C61—C66	118.87 (9)	С35—С34—Н34А	109.00
C6—C61—C66	121.16 (9)	С35—С34—Н34В	109.00
C61—C62—C63	120.31 (10)	H34A—C34—H34B	108.00
C62—C63—C64	120.34 (10)	C34—C35—H35A	109.00
C63—C64—C65	119.78 (10)	С34—С35—Н35В	109.00
C64—C65—C66	119.86 (10)	С34—С35—Н35С	109.00
C61—C66—C65	120.84 (10)	H35A—C35—H35B	109.00
N1—C2—H2	109.00	H35A—C35—H35C	109.00
C3—C2—H2	109.00	H35B—C35—H35C	109.00
C21—C2—H2	109.00	С61—С62—Н62	120.00
С2—С3—Н3	107.00	С63—С62—Н62	120.00
С4—С3—Н3	107.00	С62—С63—Н63	120.00
С31—С3—Н3	107.00	С64—С63—Н63	120.00
С4—С5—Н5А	109.00	С63—С64—Н64	120.00
C4—C5—H5B	109.00	С65—С64—Н64	120.00
С6—С5—Н5А	109.00	С64—С65—Н65	120.00

С6—С5—Н5В	109.00	С66—С65—Н65	120.00
Н5А—С5—Н5В	108.00	С61—С66—Н66	120.00
N1—C6—H6	109.00	С65—С66—Н66	120.00
C6—N1—C2—C3	65.82 (9)	N1-C6-C61-C66	44.07 (12)
C6—N1—C2—C21	-171.28 (8)	C5—C6—C61—C62	101.57 (10)
C2—N1—C6—C5	-66.24 (9)	C5—C6—C61—C66	-75.40 (11)
C2—N1—C6—C61	172.32 (8)	C2—C21—C22—C23	177.34 (9)
N1—C2—C3—C4	-51.99 (10)	C26—C21—C22—C23	-1.64 (14)
N1—C2—C3—C31	-178.04 (8)	C2-C21-C26-C25	-177.96 (9)
C21—C2—C3—C4	-172.73 (7)	C22—C21—C26—C25	1.02 (14)
C21—C2—C3—C31	61.21 (10)	C21—C22—C23—C24	0.85 (15)
N1—C2—C21—C22	-49.98 (11)	C22—C23—C24—C25	0.58 (16)
N1—C2—C21—C26	128.98 (9)	C23—C24—C25—C26	-1.19 (16)
C3—C2—C21—C22	71.12 (11)	C24—C25—C26—C21	0.38 (16)
C3—C2—C21—C26	-109.92 (10)	C3—C31—C32—C33	-177.25 (8)
C2—C3—C4—O4	-134.43 (9)	C31—C32—C33—C34	176.50 (9)
C2—C3—C4—C5	45.15 (11)	C32—C33—C34—C35	-179.13 (9)
C31—C3—C4—O4	-7.74 (13)	C6—C61—C62—C63	-176.86 (9)
C31—C3—C4—C5	171.84 (8)	C66—C61—C62—C63	0.17 (15)
C2—C3—C31—C32	-159.31 (8)	C6—C61—C66—C65	176.46 (9)
C4—C3—C31—C32	75.97 (11)	C62—C61—C66—C65	-0.54 (15)
O4—C4—C5—C6	132.23 (9)	C61—C62—C63—C64	0.37 (16)
C3—C4—C5—C6	-47.35 (11)	C62—C63—C64—C65	-0.55 (16)
C4—C5—C6—N1	54.81 (10)	C63—C64—C65—C66	0.18 (16)
C4—C5—C6—C61	176.51 (8)	C64—C65—C66—C61	0.37 (16)
N1—C6—C61—C62	-138.96 (9)		

Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z; (iii) -x+1/2, y-1/2, -z+1/2; (iv) -x+1/2, y+1/2, -z+1/2; (v) -x+1, -y+1, -z; (vi) x, y-1, z; (vii) x, y+1, z; (viii) -x-1/2, y-1/2, -z+1/2; (ix) -x+1, -y, -z; (x) -x-1/2, y+1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C6—H6···O4 ⁱ	1.00	2.59	3.2798 (11)	126
C34—H34B…Cg1 ⁱⁱ	0.99	2.87	3.7809 (12)	154
Symmetry codes: (i) $-x, -y+1, -z$; (ii) $-x, -y, -z$.				

Fig. 1

